Abstract
Licensing of replication origins is carefully regulated in a cell cycle to maintain genome integrity. Using an in vivo ubiquitination assay and temperature-sensitive cell lines we demonstrate that Cdt1 in mammalian cells is degraded through ubiquitin-dependent proteolysis in S-phase. siRNA experiments for Geminin indicate that Cdt1 is degraded in the absence of Geminin. The N terminus of Cdt1 is required for its nuclear localization, associates with cyclin A, but is dispensable for the association of Cdt1 with Geminin in cells. This region is responsible for proteolysis of Cdt1 in S-phase. On the other hand, the N terminus-truncated Cdt1 is stable in S-phase, and associates with the licensing inhibitor, Geminin. High level expression of this form of Cdt1 brings about cells having higher DNA content. Proteasome inhibitors stabilize Cdt1 in S-phase, and the protein is detected in the nucleus in a complex with Geminin. This form of Cdt1 associates with chromatin as tightly as that of G1-cells, when no Geminin is detected. Our data show that proteolysis and Geminin binding independently inactivate Cdt1 after the onset of S-phase to prevent re-replication.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.