Abstract
Progression of α-synuclein inclusion pathology may occur through cycles of release and uptake of α-synuclein aggregates, which induce additional intracellular α-synuclein inclusion pathology. This process may explain (i) the presence of α-synuclein inclusion pathology in grafted cells in human brains, and (ii) the slowly progressive nature of most human α-synucleinopathies. It also provides a rationale for therapeutic targeting of extracellular aggregates to limit pathology spread. We investigated the cellular mechanisms underlying intraneuronal α-synuclein aggregation following exposure to exogenous preformed α-synuclein amyloid fibrils. Exogenous α-synuclein fibrils efficiently attached to cell membranes and were subsequently internalized and degraded within the endosomal/lysosomal system. However, internalized α-synuclein amyloid fibrils can apparently overwhelm the endosomal/lysosomal machinery leading to the induction of intraneuronal α-synuclein inclusions comprised of endogenous α-synuclein. Furthermore, the efficiency of inclusion formation was relatively low in these studies compared to studies using primary neuronal-glial cultures over-expressing α-synuclein. Our study indicates that under physiologic conditions, endosomal/lysosomal function acts as an endogenous barrier to the induction of α-synuclein inclusion pathology, but when compromised, it may lower the threshold for pathology induction/transmission. Cover Image for this issue: doi: 10.1111/jnc.13787.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.