Abstract
Protein synthesis is depressed during mammalian hibernation in concordance with metabolic demands. In the absence of significant protein synthesis, continued proteolysis would rapidly deplete protein pools. Since ubiquitin-dependent proteolysis is implicated in the turnover of most regulatory proteins, we examined the fate of this system during hibernation. Ubiquitin-dependent proteolysis consists of two major steps: (1) the tagging of a protein substrate by ubiquitin and (2) the protein substrate's subsequent degradation by the 26S proteasome. An earlier study revealed a two to threefold elevation of ubiquitin conjugate concentrations during hibernation: an unexpected result that seemingly would suggest increased proteolytic activity. A more likely explanation for these data would be that proteolysis per se was depressed and that the increased levels of ubiquitylated proteins reflect an inability to degrade tagged proteins. We employed an assay based on the cleavage of fluorogenic substrates to address the well characterized proteolytic activities of the proteasome. All activities show little to no activity at temperatures associated with deep torpor. Coordinated depression of proteolytic activities by low temperature supports the hypothesis that the increased levels of ubiquitylated proteins during hibernation is explained by a net accumulation due to an inability to degrade the tagged proteins.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.