Abstract

Proteolysis of seed storage proteins (SSP) during germination provides a steady supply of amino acids to the embryo development into seedling. This process is coordinated by different peptidases that act sequentially and overlaid mode. These enzymes are an ancient group evolved separately in a wide structural and functional diversity and have many applications in medicine, pharmacy and industry. However, the knowledge about seed peptidases during germination was obtained from studies almost restricted to the cultivated species. This restriction implies caution about generalizations made from these studies, as well limits the biological knowledge about plant kingdom and technological use from plant peptidases. In this work, a scan of the proteolytic activity was held in germinating seeds of a leguminous subtropical woody tree. Eleven proteolytic activities were detected in protein extracts from embryonic axis and cotyledons. The presence and intensity of these activities varied over time and between these tissues. There was indication that aspartyl-endopeptidases (phytepsins) and cysteine-carboxypeptidases (plant cathepsins) were involved in A. colubrina SSP hydrolysis. These peptidases differ to that commonly involved in germination of the cultivated leguminous. In addition, one of detected phytepsins showed stability on pH scale, which is important for industrial uses. There was also detected a metallo-carboxypeptidase activity, which has been not described in plants. These peptidases must be isolated to confirm or not these indications. However, these data indicate the biological and technological importance of extending the studies about plant peptidases on a diverse genetic basis.

Highlights

  • The proteolysis of the seed storage proteins (SSP) during germination is crucial to seedling establishment

  • No clear distinction was made among peptidases with specific function in SSP hydrolysis from peptidases related to other cellular processes, in spite of the activities were detected at germination

  • Our data allowed to discern patterns of tissue-temporal proteolytic activity in the seed submitted to germination and indicate the classes of peptidases correlated with these activities

Read more

Summary

Introduction

The proteolysis of the seed storage proteins (SSP) during germination is crucial to seedling establishment. This process, which is activated at seed hydration and remains active after germination, is coordinated by joint activity of different peptidases. These hydrolases are expressed in temporal- and tissue-specific way. They are accumulated in embryonic axis and reserve tissues during seed maturation, as well synthesized during and after germination. The explanatory models of this proteolytic process were based from studies with some cultivated species. Maybe is enough to consider the close genetic base that the model plants represent in front of the angiosperms diversity [250,000 species in the world; 50,000 in Brazil] [6] and of the peptidases diversity (524,000 gene sequences; 2800 characterized enzymes, are deposited in MEROPS database; http://merops.sanger.ac.uk [7])

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call