Abstract

The human complement C9 protein (∼65 kDa) is a member of the complement pathway. It plays an essential role in the membrane attack complex (MAC), which forms a lethal pore on the cellular surface of pathogenic bacteria. Here, we charted in detail the structural microheterogeneity of C9 purified from human blood serum, using an integrative workflow combining high-resolution native mass spectrometry and (glyco)peptide-centric proteomics. The proteoform profile of C9 was acquired by high-resolution native mass spectrometry, which revealed the co-occurrence of ∼50 distinct mass spectrometry (MS) signals. Subsequent peptide-centric analysis, through proteolytic digestion of C9 and liquid chromatography (LC)-tandem mass spectrometry (MS/MS) measurements of the resulting peptide mixtures, provided site-specific quantitative profiles of three different types of C9 glycosylation and validation of the native MS data. Our study provides a detailed specification, validation, and quantification of 15 co-occurring C9 proteoforms and the first direct experimental evidence of O-linked glycans in the N-terminal region. Additionally, next to the two known glycosylation sites, a third novel, albeit low abundant, N-glycosylation site on C9 is identified, which surprisingly does not possess the canonical N-glycosylation sequence N-X-S/T. Our data also reveal a binding of up to two Ca2+ ions to C9. Mapping all detected and validated sites of modifications on a structural model of C9, as present in the MAC, hints at their putative roles in pore formation or receptor interactions. The applied methods herein represent a powerful tool for the unbiased in-depth analysis of plasma proteins and may advance biomarker discovery, as aberrant glycosylation profiles may be indicative of the pathophysiological state of the patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.