Abstract

Maturity is one of the most important factors associated with the quality of olive products, however the molecular events underlying olive drupe development remain poorly characterized. Using proteomic and metabolomic approaches, this study investigated the changes in the olive drupes (cv. Chondrolia Chalkidikis) across six developmental stages (S1-S6) that characterize the dynamics of fruit growth and color. Primary metabolites, including carbohydrates and organic acids (i.e., xylose, malic acid), showed significant accumulation in the black maturation stage. Temporal changes in various secondary metabolites (e.g., oleuropein, oleacin and tyrosol) were also observed. Proteins involved in oxidation–reduction (i.e., LOX1/5), carbohydrate metabolism (i.e., GLUA, PG) and photosynthesis (i.e., chlorophyll a-b binding proteins) significantly altered in the turning black compared to the green mature stage. By providing the first proteometabolomic study of olive drupe development, this investigation offers a novel framework for further studies on this economically relevant crop.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.