Abstract

Proteins can be exposed to vastly different environments such as the cytosol or membranes, but the delicate balance between external factors and intrinsic determinants of protein structure, stability, and folding is only poorly understood. Here we used electron capture dissociation to study horse and tuna heart Cytochromes c in the complete absence of solvent. The significantly different stability of their highly similar native folds after transfer into the gas phase, and their strikingly different folding behavior in the gas phase, can be rationalized on the basis of electrostatic interactions such as salt bridges. In the absence of hydrophobic bonding, protein folding is far slower and more complex than in solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.