Abstract

Proteins 3D-QSAR is an emerging field of bioorganic chemistry. However, the large dimensions of the structures to be handled may become a bottleneck to scaling up classic QSAR problems for proteins. In this sense, truncation approach could be used as in molecular dynamic to perform timely calculations. The spherical truncation of electrostatic field with different functions breaks down long-range interactions at a given cutoff distance (roff) resulting in short-range ones. Consequently, a Markov chain model may approach to the average electrostatic potentials of spatial distribution of charges within the protein backbone. These average electrostatic potentials can be used to predict proteins properties. Herein, we explore the effect of abrupt, shifting, force shifting, and switching truncation functions on 3D-QSAR models classifying 26 proteins with different functions: lysozymes, dihydrofolate reductases, and alcohol dehydrogenases. Almost all methods have shown overall accuracies higher than 73%. The present result points to an acceptable robustness of the MC for different truncation schemes and roff values. The results of best accuracy 92% with abrupt truncation coincide with our recent communication. We also developed models with the same accuracy value for other truncation functions; however they are more complex functions. PCA analysis for 152 non-homologous proteins has shown that there are five main eigenvalues, which explain more than 87% of the variance of the studied properties. The present molecular descriptors may encode structural information not totally accounted for the previous ones, so success with these descriptors could be expected when classic fails. The present result confirms the utility of our Markov models combined with truncation approach to generate bioorganic structure protein molecular descriptors for QSAR.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.