Abstract

AbstractPotato can be severely affected by various pathogens, including Pectobacterium atrosepticum, the cause of bacterial soft rot on tubers and of blackleg on stems. To date, no complete resistance to P. atrosepticum is available, so that only cultivars exhibiting partial resistance can be found. The mechanistic basis of this type of resistance is still poorly understood. A proteomic approach was thus developed to identify pathways specifically activated during the interaction between potato tubers and P. atrosepticum. Protein profiles on silver‐stained gels in the 5–8 pH range were obtained from healthy and infected tubers from two cultivars differing for resistance level and analyzed by 2‐DE and nano‐LC‐MS/MS. Thirteen proteins were differentially up‐regulated in the partially resistant cv. Kerpondy; by contrast, no significant differences in protein profiles of inoculated and control tubers were observed in the susceptible cv. Bintje. Mass spectrometry and database searching showed that these proteins are involved in energetic metabolism (glyceraldehyde‐3‐phosphate dehydrogenase, 2‐phosphoglycerate dehydratase or enolase, fructose biphosphate aldolase and ATPase α subunit), cytoskeleton structure (actin), protein catabolism (cysteine protease inhibitor) and patatins or patatin precursors. Their involvement in defence responses of cv. Kerpondy to P. atrosepticum is discussed. Proteomic appears as an efficient approach to have insight into the mechanisms and pathways leading to potato resistance against P. atrosepticum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.