Abstract

Fungal microbodies (peroxisomes) are inducible organelles that proliferate in response to nutritional cues. Proteins involved in peroxisome biogenesis/proliferation are designated peroxins and are encoded by PEX genes. An autophagy-related process, termed pexophagy, is responsible for the selective removal of peroxisomes from the cell. Several genes involved in pexophagy are also required for autophagy and are collectively known as ATG genes. We have re-analysed the Aspergillus nidulans genome for the presence of PEX and ATG genes and have identified a number of previously missed genes. Also, we manually determined the correct intron positions in each identified gene. The data show that in A. nidulans and related fungi the basic set of genes involved in peroxisome biogenesis or degradation are conserved. However, both processes have features that more closely resemble organelle formation/degradation in mammals rather than yeast. Thus, filamentous fungi like A. nidulans are ideal model systems for peroxisome homeostasis in man.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.