Abstract

Multiple membrane trafficking networks operate in the eukaryotic cell and are hijacked by viruses to establish infection. Recent studied have highlighted that viruses can exploit distinct pathways depending on the cell type. Japanese encephalitis virus (JEV), a neurotropic flavivirus, can infect neuronal cells through a clathrin-independent endocytic mechanism. To further characterize the membrane trafficking requirements for JEV infection of neuronal cells, we have performed a RNA interference-based study targeting 136 proteins in the human cell line IMR-32. Through quantitative RT-PCR and plaque assays we have validated that JEV infection in neuronal cells was independent of clathrin, and identified host-factors that were crucial for establishment of infection. Several of these proteins were involved in regulation of actin filament organization such as RHOA, RAC1, proteins of the ARP2/3 complex and N-WASP family, LIMK1, PAK1 and ROCK2. The small molecule inhibitors of ARP2/3 complex, CK-548 and of the N-WASP, Wiskostatin inhibited virus replication highlighting the important roles of these proteins in the virus life-cycle. We also identified ATG12, BECN1, VAPA, VAPB and VCP proteins as crucial host-factors for JEV replication across epithelial and neuronal cell lineages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.