Abstract
Individual recognition (IR) plays an important role in modulating social interactions of several animal species. IR may work at two fundamental levels: at class-level (CIR), if it allows group membership identification (e.g. familiar/unfamiliar), or at individual-level (true IR; TIR), if it allows uniquely recognizing conspecifics. Direct and indirect evidences suggest that many lizards are able to recognize conspecifics, notably using the secretions from femoral glands, specialized epidermal structures located in the cloacal region. Such secretions are made of a mix of lipids and proteins, the latter having been poorly studied but hypothesised to convey identity-related information. Using male Iberian Rock lizards, we set up bioassays to test the role of the protein fraction in IR, and specifically whether lizards: (1) can detect proteins from femoral glands, (2) can recognize their own proteins from those of an unfamiliar male (CIR) and (3) can distinguish between two unfamiliar protein signals (TIR). We found that femoral proteins can be actually detected, and the protein signal was enough to allow self-recognition, but not to distinguish between two unfamiliar males. These outcomes support the hypothesis that proteins from lizard femoral glands are used in intraspecific communication, at least at CIR level. The lack of TIR detection has three possible explanations: (1) finer IR abilities are actually absent in this species; (2) TIR requires a more complex and complete chemical signal or (3) a more prolonged and complete set of previous interactions among individuals is needed to lead to familiarity and TIR. The ability to individually distinguish conspecifics is at the basis of many social behaviours. While the sensorial channel through which individual recognition is achieved may vary, the structure of the signal is usually complex and it could be expected different components to play different roles, so which part of the signal is actually responsible for individual recognition? Lizards use the secretion of specialized epidermal glands for intraspecific chemical communication, including individual recognition. Being a mixture of lipids and proteins, we wondered if it was the protein fraction of the secretion (i.e. the heritable part) which conveys identity. Using male Iberian Rock lizards, we showed that proteins allow for self but not for true individual recognition, suggesting that a partial signature may be not enough.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.