Abstract

The physiological activities within cells are mainly regulated through protein-protein interactions (PPI). Therefore, studying protein interactions has become an essential part of researching protein function and mechanisms. Traditional biological experiments required for PPI prediction are expensive and time consuming. For this reason, many methods based on predicting PPI from protein sequences have been proposed in recent years. However, existing computational methods usually require the combination of evolutionary feature information of proteins to predict PPI docking situations. Because different relevant features of selected proteins are chosen, there may be differences in the predicted results for PPI. This article proposes a PPI prediction method based on the pretrained protein sequence model ProtBert, combined with the Bidirectional Gated Recurrent Unit (BiGRU) and attention mechanism. Only using protein sequence information and leveraging ProtBert's powerful ability to capture amino acid feature information, BiGRU is used for further feature extraction of the amino acid vectors output by ProtBert. The attention mechanism is then applied to enhance the focus on different amino acid features and improve the expression ability of protein sequence features, ultimately obtaining binary classification results for protein interactions. Experimental results show that our proposed ProtBert-BiGRU-Attention model has good predictive performance for PPI. Through relevant comparative experiments, it has been proven that our model performs well in protein binary prediction. Furthermore, through the ablation experiment of the model, different deep learning modules' contributions to the prediction have been demonstrated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.