Abstract
Accurate yet efficient computational models of solvent environment are central for most calculations that rely on atomistic modeling, such as prediction of protein-ligand binding affinities. In this study, we evaluate the accuracy of a recently developed generalized Born implicit solvent model, GBNSR6 (Aguilar et al. J. Chem. Theory Comput. 2010, 6, 3613-3639), in estimating the electrostatic solvation free energies (ΔG(pol)) and binding free energies (ΔΔG(pol)) for small protein-ligand complexes. We also compare estimates based on three different explicit solvent models (TIP3P, TIP4PEw, and OPC). The two main findings are as follows. First, the deviation (RMSD = 7.04 kcal/mol) of GBNSR6 binding affinities from commonly used TIP3P reference values is comparable to the deviations between explicit models themselves, e.g. TIP4PEw vs TIP3P (RMSD = 5.30 kcal/mol). A simple uniform adjustment of the atomic radii by a single scaling factor reduces the RMS deviation of GBNSR6 from TIP3P to within the above "error margin" - differences between ΔΔG(pol) estimated by different common explicit solvent models. The simple radii scaling virtually eliminates the systematic deviation (ΔΔG(pol)) between GBNSR6 and two out of the three explicit water models and significantly reduces the deviation from the third explicit model. Second, the differences between electrostatic binding energy estimates from different explicit models is disturbingly large; for example, the deviation between TIP4PEw and TIP3P estimates of ΔΔG(pol) values can be up to ∼50% or ∼9 kcal/mol, which is significantly larger than the "chemical accuracy" goal of ∼1 kcal/mol. The absolute ΔG(pol) calculated with different explicit models could differ by tens of kcal/mol. These discrepancies point to unacceptably high sensitivity of binding affinity estimates to the choice of common explicit water models. The absence of a clear "gold standard" among these models strengthens the case for the use of accurate implicit solvation models for binding energetics, which may be orders of magnitude faster.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.