Abstract
Efficient protein delivery into the target cell is highly desirable for protein therapeutics. Current approaches for protein delivery commonly suffer from low-loading protein capacity, poor specificity for target cells, and invisible protein release. Herein, we report a protein@inorganic nanodumpling (ND) system as an intracellular protein delivery platform. Similar to a traditional Chinese food, the dumpling, ND consists of a protein complex "filling" formed by metal-ion-directed self-assembly of protein cargos fused to histidine-rich green fluorescent proteins (H39GFPs), which are further encapsulated by an external surface "wrapper" of manganese dioxide (MnO2) via in situ biomineralization. This ND structure allows for a high loading capacity (>63 wt %) for protein cargos with enhanced stability. NDs can be targeted and internalized into cancer cells specifically through folic acid receptors by surface-tailored folic acid. The protein cargo release is in a bistimuli-responsive manner, triggered by an either reductive or acidic intracellular microenvironment. Moreover, the MnO2 nanowrapper is an efficient fluorescence quencher for inner fused GFPs and also a "switch-on" magnetic resonance imaging (MRI) agent via triggered release of Mn2+ ions, which enables activatable fluorescence/MRI bimodal imaging of protein release. Finally, the ND is highly potent and specific to deliver functional protein ribonuclease A (RNase A) into cultured target cells and the tumor site in a xenografted mouse model, eliminating the tumor cells with high therapeutic efficacy. Our approach provides a promising alternative to advance protein-based cancer therapeutics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.