Abstract

Benzoylformate decarboxylase (BFD) enhances the rate of decarboxylation of its key intermediate compared to the nonenzymic reaction by a factor of about 10 6. It has been proposed that desolvation into a hydrophobic environment will lower the reaction barrier in TDP-dependent decarboxylases. The competition of thiamin thiazolone diphosphate (TTDP) with the cofactor thiamin diphosphate (TDP) provides a dynamic indication of the relative hydrophobicity of the cofactor binding site. BFD binds the more polar TDP tightly in the presence of excess TTDP. Therefore, desolvation would not be likely to occur during catalysis. Unlike TDP enzymes that have electron acceptors as substrates, decarboxylases require protonation to produce the precursor to the aldehyde product. A mechanism involving an associated acid that traps the carbanion generated upon C–C bond breaking will permit diffusional separation of carbon dioxide and generate the appropriate precursor to the product aldehdye. This would also account for avoidance of a competitive reaction. Hasson’s detailed structure of BFD shows a highly polar active site with histidines in the vicinity of the substrate. Reports of a reduction of k cat to near the nonenzymic rate without a large effect on K m upon specific replacement of these histidines with alanine fit this alternative. In TDP enzymes involving oxidation or condensation, an electrophilic substrate or second cofactor will be bound (and no proton will be required). This will acquire the electron density of the carbanion itself. In such cases, protonated side chains are not functional while hydrophobic environments would promote the internal transfer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.