Abstract

Information from circular dichroism (CD) and DNA thermal denaturation has been used in concert to study the conformational behavior of DNA in the extended 11-nm fiber of chromatin isolated from HeLa nuclei. The histone-dependent conformational states of the system were investigated by selectively removing the hydrophilic histone domains with trypsin. These were compared to acetylated chromatin from the same source. The integrated intensity of the positive CD band for DNA above 260 nm is found to increase with the content of relatively unstressed B-form DNA. This same increase is observed along the series of whole, H1-stripped, and trypsinized chromatin samples as protein is removed. Hence, the ratio of percent hyperchromicity to integrated CD band intensity of the respective melting transitions provides useful information on the conformational state of DNA in the three principal regions of the chromatin fiber: the central loop and flanking nucleosomal regions and the linker. Results from this study suggest that central loop DNA in both hyperacetylated and control chromatin relaxes as protein is removed. However, hyperacetylated chromatin shows significantly less dependence than control chromatin upon core histone hydrophilic domains in the flanking and linker regions. Thus, histone hyperacetylation evidently relaxes DNA in chromatin with no major overall conformational changes. A possible role of histone hyperacetylation may therefore be to reduce cooperativity in the unfolding transition in chromatin and thus provide for greater localized control of unfolding during transcription.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.