Abstract

Gold nanoparticles coated with proteins have shown extraordinary biocompatibility which advanced to several nanomedicine engineering applications. We synthesized protein-coated gold nanoparticles using green and chemical reduction routes for cellular uptake study. In the current work, we coated gold-aryl nanoparticles of the type AuNPs-C6H4-4-COOH with bovine serum albumin (BSA), collagen, zein, and lysozyme proteins. Both routes were carried out without phase-transfer catalysts or extraneous stabilizing agents. High crystallinity of the AuNPs synthesized by the green route can be seen in transmission electron microscopy images. Osteosarcoma cancer cells are malignant bone tumors with abnormal cellular functions. Studies using MG-63 cells will provide mechanistic suggestions on the details of the amplification in tumors. We studied the cellular uptake of the bioconjugates by MG-63 osteosarcoma cells using laser confocal fluorescence microscopy (LCFM) and flow cytometry. In the LCFM study, BSA-AuNPs were uptaken most efficiently of all protein-coated gold nanoparticles synthesized by the green route. Lysozyme-AuNPs synthesized by the chemical reduction method were mostly efficiently internalized by MG-63 cells among all AuNPs. Zein- and lysozyme-coated AuNPs, though of relatively small size, prepared by the green method were not efficiently uptaken by MG-63. The two nanoparticles are negatively charged, and zein is also a hydrophobic coat. The difference in hydrophobicity and charge might have affected the internalization. All of those coated nanoparticles that were efficiently uptaken can potentially be used as diagnostic and therapeutic agents for osteosarcoma.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.