Abstract

Bacteriorhodopsin (BR) and halorhodopsin (HR) are light-driven outward proton and inward chloride pumps, respectively. They have similar protein architecture, being composed of seven-transmembrane helices that bind an all-trans-retinal. BR can be converted into a chloride pump by a single amino acid replacement at position 85, suggesting that BR and HR share a common transport mechanism, and the ionic specificity is determined by the amino acid at that position. However, HR cannot be converted into a proton pump by the corresponding reverse mutation. Here we mutated 6 and 10 amino acids of HR into BR-like, whereas such multiple HR mutants never pump protons. Light-induced Fourier transform infrared spectroscopy revealed that hydrogen bonds of the retinal Schiff base and water are both strong for BR and both weak for HR. Multiple HR mutants exhibit strong hydrogen bonds of the Schiff base, but the hydrogen bond of water is still weak. We concluded that the cause of nonfunctional conversion of HR is the lack of strongly hydrogen-bonded water, the functional determinant of the proton pump.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call