Abstract

BackgroundMultipass hemodialysis (MPHD) is a recently described dialysis modality, involving the use of small volumes of dialysate which are repetitively recycled. Dialysis regimes of 8 hours for six days a week using this device result in an increased removal of small water soluble solutes and middle molecules compared to standard hemodialysis (SHD). Since protein-bound solutes (PBS) exert important pathophysiological effects, we investigated whether MPHD results in improved removal of PBS as well.MethodsA cross-over study (Clinical Trial NCT01267760) was performed in nine stable HD patients. At midweek a single dialysis session was performed with either 4 hours SHD using a dialysate flow of 500 mL/min or 8 hours MPHD with a dialysate volume of 50% of estimated body water volume. Blood and dialysate samples were taken every hour to determine concentrations of p-cresylglucuronide (PCG), hippuric acid (HA), indole acetic acid (IAA), indoxyl sulfate (IS), and p-cresylsulfate (PCS). Dialyser extraction ratio, reduction ratio, and solute removal were calculated for these solutes.ResultsAlready at 60 min after dialysis start, the extraction ratio in the hemodialyser was a factor 1.4-4 lower with MPHD versus SHD, resulting in significantly smaller reduction ratios and lower solute removal within a single session. Even when extrapolating our findings to 3 times 4 h SHD and 6 times 8 h MPHD per week, the latter modality was at best similar in terms of total solute removal for most protein-bound solutes, and worse for the highly protein-bound solutes IS and PCS. When efficiency was calculated as solute removal/litre of dialysate used, MPHD was found superior to SHD.ConclusionWhen high water consumption is a concern, a treatment regimen of 6 times/week 8 h MPHD might be an alternative for 3 times/week 4 h SHD, but at the expense of a lower total solute removal of highly protein-bound solutes.

Highlights

  • Multipass hemodialysis (MPHD) is a recently described dialysis modality, involving the use of small volumes of dialysate which are repetitively recycled

  • A significantly higher weekly removal was obtained for small water soluble solutes and for middle molecules like β2microglobulin, as compared to 3 times 4 h standard hemodialysis (SHD) [20]

  • For 6 times 4 h MPHD versus 3 times 4 h SHD, TSR is only larger for PCG while smaller for IS and PCS, and for 6 times 2 h MPHD versus 3 times SHD, TSR is significantly smaller for HA, IS, and PCS. In this cross-over study comparing 4 h standard hemodialysis (SHD) with 8 h multipass hemodialysis (MPHD), concentration reduction and total solute removal were assessed for the protein-bound solutes p-cresylglucuronide (PCG), hippuric acid (HA), indole acetic acid (IAA), indoxyl sulfate (IS), and p-cresylsulfate (PCS)

Read more

Summary

Introduction

Multipass hemodialysis (MPHD) is a recently described dialysis modality, involving the use of small volumes of dialysate which are repetitively recycled. Dialysis regimes of 8 hours for six days a week using this device result in an increased removal of small water soluble solutes and middle molecules compared to standard hemodialysis (SHD). Obvious advantages are the ease of use, and the low water consumption, making the technique ideal for home hemodialysis. Using this technique, a significantly higher weekly removal was obtained for small water soluble solutes and for middle molecules like β2microglobulin, as compared to 3 times 4 h standard hemodialysis (SHD) [20]. Since higher middle molecule removal has been linked to reduced mortality [21], and due to the limited dialysate consumption, MPHD seems to be a very promising technique for performing (portable) home hemodialysis

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call