Abstract

IntroductionVital drugs may be degraded or sequestered in extracorporeal membrane oxygenation (ECMO) circuits, with lipophilic drugs considered to be particularly vulnerable. However, the circuit effects on protein-bound drugs have not been fully elucidated. The aim of this experimental study was to investigate the influence of plasma protein binding on drug disposition in ex vivo ECMO circuits.MethodsFour identical ECMO circuits comprising centrifugal pumps and polymethylpentene oxygenators and were used. The circuits were primed with crystalloid, albumin and fresh human whole blood and maintained at a physiological pH and temperature for 24 hours. After baseline sampling, known quantities of study drugs (ceftriaxone, ciprofloxacin, linezolid, fluconazole, caspofungin and thiopentone) were injected into the circuit to achieve therapeutic concentrations. Equivalent doses of these drugs were also injected into four polypropylene jars containing fresh human whole blood for drug stability testing. Serial blood samples were collected from the controls and the ECMO circuits over 24 hours, and the concentrations of the study drugs were quantified using validated chromatographic assays. A regression model was constructed to examine the relationship between circuit drug recovery as the dependent variable and protein binding and partition coefficient (a measure of lipophilicity) as explanatory variables.ResultsFour hundred eighty samples were analysed. There was no significant loss of any study drugs in the controls over 24 hours. The average drug recoveries from the ECMO circuits at 24 hours were as follows: ciprofloxacin 96%, linezolid 91%, fluconazole 91%, ceftriaxone 80%, caspofungin 56% and thiopentone 12%. There was a significant reduction of ceftriaxone (P = 0.01), caspofungin (P = 0.01) and thiopentone (P = 0.008) concentrations in the ECMO circuit at 24 hours. Both protein binding and partition coefficient were highly significant, with the model possessing a high coefficient of determination (R2 = 0.88, P <0.001).ConclusionsRecovery of the highly protein-bound drugs ceftriaxone, caspofungin and thiopentone was significantly lower in the ECMO circuits at 24 hours. For drugs with similar lipophilicity, the extent of protein binding may determine circuit drug loss. Future clinical population pharmacokinetic studies should initially be focused on drugs with greater lipophilicity and protein binding, and therapeutic drug monitoring should be strongly considered with the use of such drugs.

Highlights

  • Vital drugs may be degraded or sequestered in extracorporeal membrane oxygenation (ECMO) circuits, with lipophilic drugs considered to be vulnerable

  • We present results for another six study drugs and describe the influence of protein binding on drug disposition in ECMO circuits

  • The ex vivo circuits were maintained under physiological conditions for 24 hours without complications

Read more

Summary

Introduction

Vital drugs may be degraded or sequestered in extracorporeal membrane oxygenation (ECMO) circuits, with lipophilic drugs considered to be vulnerable. The circuit effects on protein-bound drugs have not been fully elucidated The aim of this experimental study was to investigate the influence of plasma protein binding on drug disposition in ex vivo ECMO circuits. In venoarterial ECMO, the ECMO circuit flows may exceed native cardiac output [4]. This transit of blood through the extracorporeal circuit may result in degradation and/or sequestration of circulating compounds, including administered drugs [5]. From a PK point of view, the addition of an extracorporeal circuit that can sequester and/or degrade drugs during transit, as well as modulate their VD and CL, which presents a significant challenge. The drug, device and disease factors affecting PK during ECMO are very difficult to characterise in a critically unwell patient, and, as such, laboratory-based research that mimics the clinical scenario [7] should be used to fully understand the complex mechanisms behind the PK alterations

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call