Abstract

There is growing evidence for a role of proteinase-activated receptors (PARs), a subfamily of G protein-coupled receptors, in cancer. We have previously shown that PAR1 and PAR4 are able to promote the migration of hepatocellular carcinoma (HCC) cells suggesting a function in HCC progression. In this study, we assessed the underlying signalling mechanisms. Using Hep3B liver carcinoma cells, RTK activation was assessed by Western blot employing phospho-RTK specific antibodies, ROS level were estimated by H2DCF-DA using confocal laser scanning microscopy, and measurement of PTP activity was performed in cell lysates using 6,8-difluoro-4-methylumbelliferyl phosphate (DiFMUP) as a substrate. Thrombin, the PAR1 selective agonist peptide TFLLRN-NH2 (PAR1-AP), and the PAR4 selective agonist peptide, AYPGKF-NH2 (PAR4-AP), induced a significant increase in Hep3B cell migration that could be blocked by inhibitors targeting formation of reactive oxygen species (ROS), or activation of hepatocyte-growth factor receptor (Met), or platelet-derived growth factor receptor (PDGFR), respectively. The involvement of these intracellular effectors in PAR1/4-initiated migratory signalling was further supported by the findings that individual stimulation of Hep3B cells with the PAR1-AP and the PAR4-AP induced an increase in ROS production and the transactivation of Met and PDGFR. In addition, PAR1- and PAR4-mediated inhibition of total PTP activity and specifically PTP1B. ROS inhibition by N-acetyl-L-cysteine prevented the inhibition of PTP1B phosphatase activity induced by PAR1-AP and the PAR4-AP, but had no effect on PAR1/4-mediated activation of Met and PDGFR in Hep3B cells. Collectively, our data indicate that PAR1 and PAR4 activate common promigratory signalling pathways in Hep3B liver carcinoma cells including activation of the receptor tyrosine kinases Met and PDGFR, the formation of ROS and the inactivation of PTP1B. However, PAR1/4-triggered Met and PDGFR transactivation seem to be mediated independently from the ROS-PTP1B signalling module.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.