Abstract
Keloid is a fibroproliferative disorder resulting from trauma, characterized by abnormal activation of keloid fibroblasts and excessive deposition of extracellular matrix (ECM). It affects life quality of patients and lacks of effective therapeutic targets. Protein tyrosine phosphatase 1B (PTP1B) belongs to the protein tyrosine phosphatases and participates in many cellular processes such as metabolism, proliferation and motility. It has been reported that PTP1B negatively regulated diabetic wound healing and tumor progression. However, its effects in keloid remain unclear. Here, we aimed to evaluate the effects of PTP1B on keloid fibroblasts which play essential roles in keloids pathogenesis. Our results revealed that PTP1B expression was decreased both in keloid tissues and in keloid fibroblasts compared to healthy controls. Keloid fibroblasts (KFs) showed higher cell proliferation, motility, ECM production and ERK activity than normal fibroblasts (NFs). Overexpression of PTP1B in KFs and NFs inhibited cell proliferation, motility, ECM synthesis and the MAPK/ERK signalling pathway while knockdown of PTP1B showed converse effects. The rescue experiments with ERK inhibitor further verified that MAPK/ERK signalling pathway involved in PTP1B regulatory network. Taken together, our findings indicated that overexpression of PTP1B suppressed keloid fibroblasts bio-behaviours and promoted their phenotype switch to normal cells via inhibiting the MAPK/ERK signalling pathway, suggesting it may be a potential anti-keloid therapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.