Abstract
Context: Despite phytochemical studies of Agrimonia pilosa Ledeb. (Rosaceae), the antidiabetic effects of this plant are unknown.Objective: This study characterizes the isolated compounds from the aerial parts of A. pilosa and evaluates their PTP1B and α-glucosidase inhibitory properties.Materials and methods: Ethanol extract of A. pilosa was found to inhibit 64% PTP1B activity at 30 μg/mL. The ethanol extract was partitioned with methylene chloride, ethyl acetate, n-butanol, and water fractions. Among these, the ethyl acetate fraction displayed the most potent PTP1B activity. The ethyl acetate extract was separated by chromatographic methods to obtain flavonoids and triterpenoids (1–11); which were evaluated for their inhibitory effects on PTP1B activity with p-nitrophenyl phosphate (p-NPP) as a substrate, and also α-glucosidase enzyme.Results: Compounds 1–11 were identified as apigenin-7-O-β-d-glucuronide-6″-methyl ester, triliroside, quercetin-7-O-β-d-glycoside, quercetin-3-O-β-d-glycoside, kaempferol, kaempferol-3-O-α-l-rhamnoside, β-sitosterol, ursolic acid, tormentic acid, methyl 2-hydroxyl tricosanoate, and palmitic acid. Compounds 8, 9, and 11 displayed inhibitory effects on PTP1B activity with IC50 values of 3.47 ± 0.02, 0.50 ± 0.06, and 0.10 ± 0.03 μM, respectively. Compounds 3, 4, 6, and 9 exhibited inhibition of the α-glucosidase activity with IC50 values of 11.2 ± 0.2, 29.6 ± 0.9, 28.5 ± 0.1, and 23.8 ± 0.4 μM, respectively.Discussion and conclusion: As major ingredients of A. pilosa, compounds 1, 6, 8, and 9 showed the greatest inhibitory potency on PTP1B activity. Compounds 3, 6, 8, and 9 also showed potent inhibitory effects on α-glucosidase enzyme. This result suggested the potential of these compounds for developing antidiabetic agents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.