Abstract

Obesity-induced endoplasmic reticulum (ER) stress has been proposed as an important pathway in the development of insulin resistance. Protein-tyrosine phosphatase 1B (PTP1B) is a negative regulator of insulin signaling and is tethered to the ER-membrane. The aim of the study was to determine the mechanisms involved in the crosstalk between ER-stress and PTP1B. PTP1B whole body knockout and C57BL/6J mice were subjected to a high-fat or normal chow-diet for 20 weeks. High-fat diet feeding induced body weight gain, increased adiposity, systemic glucose intolerance, and hepatic steatosis were attenuated by PTP1B deletion. High-fat diet- fed PTP1B knockout mice also exhibited improved glucose uptake measured using [3H]-2-deoxy-glucose incorporation assay and Akt phosphorylation in the skeletal muscle tissue, compared to their wild-type control mice which received similar diet. High-fat diet-induced upregulation of glucose-regulated protein-78, phosphorylation of eukaryotic initiation factor 2α and c-Jun NH2-terminal kinase-2 were significantly attenuated in the PTP1B knockout mice. Mice lacking PTP1B showed decreased expression of the autophagy related protein p62 and the unfolded protein response adaptor protein NCK1 (non-catalytic region of tyrosine kinase). Treatment of C2C12 myotubes with the ER-stressor tunicamycin resulted in the accumulation of reactive oxygen species (ROS), leading to the activation of protein expression of PTP1B. Furthermore, tunicamycin-induced ROS production activated nuclear translocation of NFκB p65 and was required for ER stress-mediated expression of PTP1B. Our data suggest that PTP1B is induced by ER stress via the activation of the ROS-NFκB axis which is causes unfolded protein response and mediates insulin resistance in the skeletal muscle under obese condition.

Highlights

  • Obesity has reached epidemic proportions worldwide and is associated with an increased risk of disability and morbidity [1]

  • Delibegovic and colleagues showed that mice with muscle-specific deletion of Protein tyrosine phosphatase 1B (PTP1B) had improved glucose uptake and insulin signaling in skeletal muscle after high-fat diet feeding [14]

  • Materials 2-Deoxy-[3H]-D-Glucose-1, propylene glycol and hematoxylin were from Sigma (St Lois, MO), tauroursodeoxycholic acid (TUDCA) and tunicamycin were from Calbiochem (Darmstadt, Germany); PTP1B siRNA sequences, non-target siRNA sequences and DharmaFECT transfection reagent were from Thermo Scientific (Rockford, IL); antibodies against-glucose-regulated protein 78 (GRP78), -CHOP, -GAPDH, -phospho-eIF2a, -phospho-JNK1/2, eIF2a, JNK1/2, -phospho-Akt, Akt, Beclin-1, p62, NFkB p65, lamin A, non-catalytic region of tyrosine kinase 1 (NCK1), LC-3B, ATG5, ATG7 and LumiGLO reagent were from Cell Signaling Technology (Boston, MA); antibodies against PTP1B were from Millipore (Billerica, MA, USA); antibodies against ATG5 were from Abgent (San Diego, CA)

Read more

Summary

Introduction

Obesity has reached epidemic proportions worldwide and is associated with an increased risk of disability and morbidity [1]. Insulin resistance is a hallmark of obesity-associated metabolic syndrome and type 2 diabetes mellitus. It is characterized by impairment in glucose-uptake by insulin sensitive tissues [4]. Global knock out of PTP1B in mice exhibit a phenotype with low adiposity, elevated insulin sensitivity and increased energy expenditure [7,8]. Insulin resistant conditions, such as those seen with high-fat diet feeding, leptin deficiency, hyperglycemia or age-induced impairment in insulin signaling, are associated with increased expression of PTP1B in insulin-sensitive tissues [9,10,11]. Delibegovic and colleagues showed that mice with muscle-specific deletion of PTP1B had improved glucose uptake and insulin signaling in skeletal muscle after high-fat diet feeding [14]

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.