Abstract

Enterococcus faecalis is a member of human gut microflora causing nosocomial infection involving biofilm formation. Ethyl methyl sulfonate induced mutants were analysed using crystal violet assay, SEM and CLSM microscopy which confirmed AK-E12 as biofilm efficient and AK-F6 as biofilm deficient mutants. Growth curve pattern revealed AK-E12 was fast growing whereas, AK-F6 was found slow growing mutant. 2D-Electrophorosis and MALDI-TOF analysis revealed over and underexpression of many translation-elongation associated proteins in mutants compared to wild type. Protein translation elongation factor G, translation elongation factor Tu and ribosomal subunit interface proteins were underexpressed and UTP–glucose-1-phosphate uridylyl transferase and cell division protein divIVA were overexpressed in AK-E12 as compared to wild type. In AK-F6, except 10 kDa chaperonin which was over-expressed other selected proteins were found to be suppressed. RT-PCR confirmed proteomic data except for the translation elongation factor G which showed contradictory data of proteome expression in AK-E12. Protein-protein interaction networks were constructed using STRING 10.0 which demonstrated strong connection of translation-elongation proteins with other proteins. Hence, it concludes from the data that translation elongation factors are important in transition of planktonic cells to biofilm cells in Enterococcus faecalis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.