Abstract

The Rho family GTPase Cdc42 is a critical regulator of cellular polarization from yeast to man. An analysis of its function in T cell activation is therefore of interest. This analysis poses two substantial challenges, similar to the analysis of many other critical T cell signaling intermediates. First, Cdc42 is required for development and cell survival, necessitating short-term manipulation of its activity. Second, Cdc42 is likely involved in multiple signaling pathways, requiring approaches to distinguish multiple roles. To address these challenges, we first determined and quantified spatio-temporal patterns of Cdc42 activity using live cell video fluorescence microscopy. This generates hypotheses at which times and locations Cdc42 might play possibly distinct roles. Second and as the focus of this manuscript, we employed protein transduction to manipulate Cdc42 activity for the generation of causality. Protein transduction allows such manipulation to be short-term, quantitative, and with multiple reagents. Here, we characterize uptake, retention, and subcellular distribution of protein transduction reagents. We describe how a more quantitative single cell analysis of Cdc42 activity provides superior distinction between experimental conditions. And we show how we have used dose responses of the protein transduction reagents to minimize side effects while retaining efficacy. We suggest that our strategy is an important complement to more established techniques to study protein function in primary T cells, in particular in the investigation of signaling intermediates that are essential for cell survival and regulate multiple aspects of T cell activation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.