Abstract

SUMMARY Erythrocytes are extensively remodelled by the malaria parasite following invasion of the cell. Plasmodium falciparum encodes numerous virulence-associated and host-cell remodelling proteins that are trafficked to the cytoplasm, the cell membrane and the surface of the infected erythrocyte. The export of soluble proteins relies on a sequence directing entry into the secretory pathways in addition to an export signal. The export signal consisting of five amino acids is termed the Plasmodium export element (PEXEL) or the vacuole transport signal (VTS). Genome mining studies have revealed that PEXEL/VTS carrying protein families have expanded dramatically in P. falciparum compared with other malaria parasite species, possibly due to lineage-specific expansion linked to the unique requirements of P. falciparum for host-cell remodelling. The functional characterization of such genes and gene families may reveal potential drug targets that could inhibit protein trafficking in infected erythrocytes. This review highlights some of the recent advances and key knowledge gaps in protein trafficking pathways in P. falciparum-infected red cells and speculates on the impact of exported gene families in the trafficking pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.