Abstract
The factors contributing to the thermal stability of proteins from thermophilic origins are matters of intense debate and investigation. Thermophilic proteins are thought to possess better packed interiors than their mesophilic counterparts, leading to lesser overall flexibility and a corresponding reduction in surface-to-volume ratio. These observations prompted an analysis of B values reported in high-resolution X-ray crystal structures of mesophilic and thermophilic proteins. In this analysis, the following aspects were addressed: (1) frequency distribution of normalized B values (B' factors) over all the proteins and for individual amino acids; (2) amino acid compositions in high B value regions of polypeptide chains; (3) variation in the B values from core to the surface of proteins in terms of their radius of gyration; and (4) degree of dispersion of normalized B values in spheres around the Calpha atoms. The analysis revealed that (1) Ser and Thr have lesser flexibility in thermophiles than in mesophiles, (2) the proportion of Glu and Lys in high B value regions of thermophiles is higher and that of Ser and Thr is lower and (3) the dispersion of B values within spheres at Calpha atoms is similar in mesophiles and thermophiles. These observations reflect plausible differences in the dynamics of thermophilic and mesophilic proteins and suggest amino acid substitutions that are likely to change thermal stability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.