Abstract

BackgroundSilver nanoparticles (AgNPs), as promising anti-microbials and anti-cancer therapeutics, the toxicological effect and killing efficiency towards cells need in-depth investigation for better applications in daily life and healthcare fields. Thus far, limited studies have yet elucidated the protein targets of AgNPs and silver ions (Ag+) released from intracellular AgNPs dissolution in hepatocytes, as well as potential interaction mechanism.ResultsThrough integrating proteomic and metallomic methodologies, six intracellular protein targets (i.e. glutathione S-transferase (GST), peroxiredoxin, myosin, elongation factor 1, 60S ribosomal protein and 40S ribosomal protein) were ultimately identified and confirmed as AgNPs- and Ag+ −binding proteins. Toward a deep understanding the direct interaction mechanism between AgNPs and these protein targets, GST was chosen as a representative for toxicological investigation. The results revealed that AgNPs could remarkably deplete the enzyme activity of GST but did not depress the expressions, resulting in elevated intracellular oxidative stress and cell death. Finally, both “Ag+ effect” and “particle-specific effect” were demonstrated to concomitantly account for the overall cytotoxicity of AgNPs, and the former relatively contributed more via activity depletion of GST.ConclusionsCollectively, our major contribution is the development of an efficient strategy to identify the intracellular AgNPs-targeted protein (e.g. GST) through integrating proteomic and metallomic methodologies, which is helpful to accelerate the interpretation of underlying toxicological mechanism of AgNPs.

Highlights

  • Silver nanoparticles (AgNPs), as promising anti-microbials and anti-cancer therapeutics, the toxicological effect and killing efficiency towards cells need in-depth investigation for better applications in daily life and healthcare fields

  • Characterization of AgNPs AgNPs used in this study were nanospheres with polyvinylpyrrolidone (PVP) coating, which is a typical surface modification for sterically stabilizing AgNPs in solution [23, 24]

  • In order to gain an insight into the cytotoxicity, the physicochemical properties of AgNPs were first characterized in various media (i.e. deionized water (DW), phosphate buffer saline (PBS), artificial lysosomal fluid (ALF), Dulbecco’s Modified Eagle Medium (DMEM) and cell culture medium (CCM))

Read more

Summary

Results

Through integrating proteomic and metallomic methodologies, six intracellular protein targets (i.e. glutathione S-transferase (GST), peroxiredoxin, myosin, elongation factor 1, 60S ribosomal protein and 40S ribosomal protein) were identified and confirmed as AgNPs- and Ag+ −binding proteins. Toward a deep understanding the direct interaction mechanism between AgNPs and these protein targets, GST was chosen as a representative for toxicological investigation. The results revealed that AgNPs could remarkably deplete the enzyme activity of GST but did not depress the expressions, resulting in elevated intracellular oxidative stress and cell death. Both “Ag+ effect” and “particle-specific effect” were demonstrated to concomitantly account for the overall cytotoxicity of AgNPs, and the former relatively contributed more via activity depletion of GST

Conclusions
Background
Results and discussion
Conclusion
Methods
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call