Abstract

It has been believed that protein tagging caused by consecutive rare codons involves tmRNA action at the internal mRNA site. We demonstrated previously that ribosome stalling either at sense or stop codons caused by certain arrest sequences could induce mRNA cleavage near the arrest site, resulting in nonstop mRNAs that are recognized by tmRNA. These findings prompted us to re-examine the mechanism of tmRNA tagging at a run of rare codons. We report here that either AGG or CGA but not AGA arginine rare-codon clusters inserted into a model crp mRNA encoding cAMP receptor protein (CRP) could cause an efficient protein tagging. We demonstrate that more than three consecutive AGG codons are needed to induce an efficient ribosome stalling therefore tmRNA tagging in our system. The tmRNA tagging was eliminated by overproduction of tRNAs corresponding to rare codons, indicating that a scarcity of the corresponding tRNA caused by the rare-codon cluster is an important factor for tmRNA tagging. Mass spectrometry analyses of proteins generated in cells lacking or possessing tmRNA encoding a protease-resistant tag sequence indicated that the truncation and tmRNA tagging occur within the cluster of rare codons. Northern and S1 analyses demonstrated that nonstop mRNAs truncated within the rare-codon clusters are detected in cells lacking tmRNA but not in cells expressing tmRNA. We conclude that a ribosome stalled by the rare codon induces mRNA cleavage, resulting in nonstop mRNAs that are recognized by tmRNA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call