Abstract

Vasopressin stimulates the introduction of aggregated particles, which may represent pathways for water flow, into the luminal membrane of toad urinary bladder. It is not known whether water transport pathways are degraded on removal from membrane or whether they are recycled. We examined the effect of the protein synthesis inhibitors cycloheximide and puromycin using repeated 30-min cycles of vasopressin followed by washout of vasopressin, all in the presence of an osmotic gradient, a protocol that maximizes aggregate turnover. "High dose" cycloheximide (200 micrograms/ml) inhibited flow immediately. "Low dose" cycloheximide (1 microgram/ml) did not affect initial flow; however, flow was inhibited by the fourth restimulation. On further rechallenge, inhibition persisted but did not increase. In the absence of vasopressin, inhibition did not develop. Despite the inhibition of flow in vasopressin-treated tissues, the cAMP-dependent protein kinase ratio (-cAMP/+cAMP), an index of in vivo cAMP effect, was elevated in cycloheximide-treated tissues, suggesting modulation at a distal site in the stimulatory cascade. Cycloheximide inhibited flow when 10 microM forskolin or 0.2 mM 8-BrcAMP was substituted for vasopressin in the fourth period; however, MIX (4 mM)-stimulated flow was enhanced by 1 microgram/ml cycloheximide but inhibited by 200 micrograms/ml cycloheximide. [14C]urea permeability was not inhibited by cycloheximide. Puromycin (0.5 mM) also inhibited water flow by the fourth challenge with vasopressin. The data suggest that protein synthesis inhibitors attenuate flow at a site that is distal to cAMP-dependent protein kinase.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call