Abstract

The aim of the investigation was to assess and compare the effects of a calcium channel antagonist, (i.e. amlodipine) and an ACE-inhibitor (i.e. lisinopril) in reducing chronic left ventricular hypertrophy in 15-week old spontaneously hypertensive rats (SHR). Changes in cardiac hypertrophy were assessed after 8 weeks by measuring the fractional rates of protein synthesis using a 'flooding dose' of [3H]-phenylalanine for 10 min. Blood pressure was monitored throughout the treatment period in both SHR and Wistar-Kyoto control rats (WKY). The results showed a decrease in blood pressure by amlodipine after 1 week of treatment which was further reduced at 4 to 8 weeks. Lisinopril caused immediate and sustained reductions in blood pressure (190 mmHg to 130 mmHg, P < 0.001). After 8 weeks of treatment in SHR rats, amlodipine had no significant effect on left ventricular weight (P > 0.05), whereas lisinopril caused a marked reduction. The protein content and RNA were also not changed by amlodipine. In contrast, lisinopril significantly lowered the tissue protein, RNA and DNA content (P < 0.001). The changes in the left ventricles of lisinopril-treated SHR rats were accompanied by an increase in the fractional synthesis rate of left ventricular myofibrillar proteins (+12 per cent, P < 0.025). The synthesis rate per unit RNA was also increased in right ventricular tissue of lisinopril-treated SHR rats. However, amlodipine had no effect on the fractional synthesis rates of any of the left-ventricular fractions of SHR rats (P > 0.05). The cellular efficiency in the right ventricle was also increased in amlodipine-treated SHR rats, indicating a moderate effect on protein metabolism. In conclusion, amlodipine had minimal effects in the reduction of established left ventricular hypertrophy (LVH), despite reducing the blood pressure, whereas lisinopril caused regression of LVH. These events were associated with small changes in protein synthesis rates, with the contractile protein showing an increase.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call