Abstract

One of the well-known observations of proteins from thermophilic bacteria is the bias of the amino acid composition in which charged residues are present in large numbers, and polar residues are scarce. On the other hand, it has been reported that the molecular surfaces of proteins are adapted to their subcellular locations, in terms of the amino acid composition. Thus, it would be reasonable to expect that the differences in the amino acid compositions between proteins of thermophilic and mesophilic bacteria would be much greater on the protein surface than in the interior. We performed systematic comparisons between proteins from thermophilic bacteria and mesophilic bacteria, in terms of the amino acid composition of the protein surface and the interior, as well as the entire amino acid chains, by using sequence information from the genome projects. The biased amino acid composition of thermophilic proteins was confirmed, and the differences from those of mesophilic proteins were most obvious in the compositions of the protein surface. In contrast to the surface composition, the interior composition was not distinctive between the thermophilic and mesophilic proteins. The frequency of the amino acid pairs that are closely located in the space was also analyzed to show the same trend of the single amino acid compositions. Interestingly, extracellular proteins from mesophilic bacteria showed an inverse trend against thermophilic proteins (i.e. a reduced number of charged residues and rich in polar residues). Nuclear proteins from eukaryotes, which are known to be abundant in positive charges, showed different compositions as a whole from the thermophiles. These results suggest that the bias of the amino acid composition of thermophilic proteins is due to the residues on the protein surfaces, which may be constrained by the extreme environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call