Abstract

Two protein post-translational modifications, lysine succinylation and malonylation, are implicated in protein regulation, glycolysis, and energy metabolism. The precursors of these modifications, succinyl-CoA and malonyl-CoA, are key players in central metabolic processes. Both modification profiles have been proven to be responsive to metabolic stimuli, such as hypoxia. As mitochondrial dysfunction and metabolic dysregulation are implicated in schizophrenia and other psychiatric illnesses, these modification profiles have the potential to reveal yet another layer of protein regulation and can furthermore represent targets for biomarkers that are indicative of disease as well as its progression and treatment. In this work, data from shotgun mass spectrometry-based quantitative proteomics were compiled and analyzed to probe the succinylome and malonylome of postmortem brain tissue from patients with schizophrenia against controls and the human oligodendrocyte precursor cell line MO3.13 with the dizocilpine chemical model for schizophrenia, three antipsychotics, and co-treatments. Several changes in the succinylome and malonylome were seen in these comparisons, revealing these modifications to be a largely under-studied yet important form of protein regulation with broad potential applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.