Abstract

The function of a protein is closely correlated with its subcellular location. With the rapid increase in new protein sequences entering into data banks, we are confronted with a challenge: is it possible to utilize a bioinformatic approach to help expedite the determination of protein subcellular locations? To explore this problem, proteins were classified, according to their subcellular locations, into the following 12 groups: (1) chloroplast, (2) cytoplasm, (3) cytoskeleton, (4) endoplasmic reticulum, (5) extracell, (6) Golgi apparatus, (7) lysosome, (8) mitochondria, (9) nucleus, (10) peroxisome, (11) plasma membrane and (12) vacuole. Based on the classification scheme that has covered almost all the organelles and subcellular compartments in an animal or plant cell, a covariant discriminant algorithm was proposed to predict the subcellular location of a query protein according to its amino acid composition. Results obtained through self-consistency, jackknife and independent dataset tests indicated that the rates of correct prediction by the current algorithm are significantly higher than those by the existing methods. It is anticipated that the classification scheme and concept and also the prediction algorithm can expedite the functionality determination of new proteins, which can also be of use in the prioritization of genes and proteins identified by genomic efforts as potential molecular targets for drug design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.