Abstract

Recent development of high-resolution mass spectrometry (MS) instruments enables chemical crosslinking (XL) to become a high-throughput method for obtaining structural information about proteins. Restraints derived from XL-MS experiments have been used successfully for structure refinement and protein–protein docking. However, one formidable question is under which circumstances XL-MS data might be sufficient to determine a protein’s tertiary structure de novo? Answering this question will not only include understanding the impact of XL-MS data on sampling and scoring within a de novo protein structure prediction algorithm, it must also determine an optimal crosslinker type and length for protein structure determination. While a longer crosslinker will yield more restraints, the value of each restraint for protein structure prediction decreases as the restraint is consistent with a larger conformational space.In this study, the number of crosslinks and their discriminative power was systematically analyzed in silico on a set of 2055 non-redundant protein folds considering Lys–Lys, Lys–Asp, Lys–Glu, Cys–Cys, and Arg–Arg reactive crosslinkers between 1 and 60Å. Depending on the protein size a heuristic was developed that determines the optimal crosslinker length. Next, simulated restraints of variable length were used to de novo predict the tertiary structure of fifteen proteins using the BCL::Fold algorithm. The results demonstrate that a distinct crosslinker length exists for which information content for de novo protein structure prediction is maximized. The sampling accuracy improves on average by 1.0Å and up to 2.2Å in the most prominent example. XL-MS restraints enable consistently an improved selection of native-like models with an average enrichment of 2.1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call