Abstract

We developed a novel Monte Carlo threading algorithm which allows gaps and insertions both in the template structure and threaded sequence. The algorithm is able to find the optimal sequence-structure alignment and sample suboptimal alignments. Using our algorithm we performed sequence-structure alignments for a number of examples for three protein folds (ubiquitin, immunoglobulin and globin) using both “ideal” set of potentials (optimized to provide the best Z-score for a given protein) and more realistic knowledge-based potentials. Two physically different scenarios emerged. If a template structure is similar to the native one (within 2 Å RMS), then (i) the optimal threading alignment is correct and robust with respect to deviations of the potential from the “ideal” one; (ii) suboptimal alignments are very similar to the optimal one; (iii) as Monte Carlo temperature decreases a sharp cooperative transition to the optimal alignment is observed. In contrast, if the template structure is only moderately close to the native structure (RMS greater than 3.5 Å), then (i) the optimal alignment changes dramatically when an “ideal” potential is substituted by the real one; (ii) the structures of suboptimal alignments are very different from the optimal one, reducing the reliability of the alignment; (iii) the transition to the apparently optimal alignment is non-cooperative. In the intermediate cases when the RMS between the template and the native conformations is in the range between 2 Å and 3.5 Å, the success of threading alignment may depend on the quality of potentials used.These results are rationalized in terms of a threading free energy landscape. Possible ways to overcome the fundamental limitations of threading are discussed briefly.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.