Abstract

Ultralarge chemical spaces describing several billion compounds are revolutionizing hit identification in early drug discovery. Because of their size, such chemical spaces cannot be fully enumerated and require ad-hoc computational tools to navigate them and pick potentially interesting hits. We here propose a structure-based approach to ultralarge chemical space screening in which commercial chemical reagents are first docked to the target of interest and then directly connected according to organic chemistry and topological rules, to enumerate drug-like compounds under three-dimensional constraints of the target. When applied to bespoke chemical spaces of different sizes and chemical complexity targeting two receptors of pharmaceutical interest (estrogen β receptor, dopamine D3 receptor), the computational method was able to quickly enumerate hits that were either known ligands (or very close analogs) of targeted receptors as well as chemically novel candidates that could be experimentally confirmed by in vitro binding assays. The proposed approach is generic, can be applied to any docking algorithm, and requires few computational resources to prioritize easily synthesizable hits from billion-sized chemical spaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.