Abstract
Insulin provides a model of induced fit in macromolecular recognition: the hormone's conserved core is proposed to contribute to a novel receptor-binding surface. The core's evolutionary invariance, unusual among globular proteins, presumably reflects intertwined constraints of structure and function. To probe the architectural basis of such invariance, we have investigated hydrophobic substitutions of a key internal side chain (Leu(A16)). Although the variants exhibit perturbed structure and stability, moderate receptor-binding activities are retained. These observations suggest that the A16 side chain provides an essential structural buttress but unlike neighboring core side chains, does not itself contact the receptor. Among invertebrate insulin-like proteins, Leu(A16) and other putative core residues are not conserved, suggesting that the vertebrate packing scheme is not a general requirement of an insulin-like fold. We propose that conservation of Leu(A16) among vertebrate insulins and insulin-like growth factors is a side consequence of induced fit: alternative packing schemes are disallowed by lack of surrounding covariation within the hormone's hidden receptor-binding surface. An analogy is suggested between Leu(A16) and the spandrels of San Marco, tapering triangular spaces at the intersection of the dome's arches. This celebrated metaphor of Gould and Lewontin emphasizes the role of interlocking constraints in the evolution of biological structures.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.