Abstract

The purpose of the study was to investigate the relationship of the second virial coefficient, B22, to the extent of irreversible protein aggregation upon storage. A monoclonal antibody and ovalbumin were incubated at 37 degrees C (3 months) under various solution conditions to monitor the extent of aggregation. The B22 values of these proteins were determined under similar solution conditions by a modified method of flow-mode static light scattering. The conformation of these proteins was studied using circular dichroism (CD) spectroscopy and second-derivative Fourier transform infrared spectroscopy. Both proteins readily aggregated at pH 4.0 (no aggregation observed at pH 7.4); the extent of aggregation varied with the ionic strength and the presence of cosolutes (sucrose, glycine, and Tween 80). Debye plots of the monoclonal antibody showed moderate attractive interactions at pH 7.4, whereas, at pH 4.0, nonlinear plots were obtained, indicating self-association. CD studies showed partially unfolded structure of antibody at pH 4.0 compared with that at pH 7.4. In the case of ovalbumin, similar B22 values were obtained in all solution conditions irrespective of whether the protein aggregated or not. CD studies of ovalbumin indicated the presence of a fraction of completely unfolded as well as partially unfolded species at pH 4.0 compared with that at pH 7.4. The formation of a structurally altered state is a must for irreversible aggregation to proceed. Because this aggregation-prone species could be an unfolded species present in a small fraction compared with that of the native state or it could be a partially unfolded state whose net interactions are not significantly different compared with those of the native state, yet the structural changes are sufficient to lead to long-term aggregation, it is unlikely that B22 will correlate with long-term aggregation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.