Abstract

Protein S-palmitoylation is an important post-translational modification (PTM) in blood stages of the malaria parasite, Plasmodium falciparum. S-palmitoylation refers to reversible covalent modification of cysteine residues of proteins by saturated fatty acids. In vivo, palmitoylation is regulated by concerted activities of DHHC palmitoyl acyl transferases (DHHC PATs) and acyl protein thioesterases (APTs), which are enzymes responsible for protein palmitoylation and depalmitoylation, respectively. Here, we investigate the role of protein palmitoylation in red blood cell (RBC) invasion by P.falciparum merozoites. We demonstrate for the first time that free merozoites require PAT activity for microneme secretion in response to exposure to the physiologically relevant low [K+] environment, characteristic of blood plasma. We have adapted copper catalyzed alkyne azide chemistry (CuAAC) to image palmitoylation in merozoites and found that exposure to low [K+] activates PAT activity in merozoites. Moreover, using acyl biotin exchange chemistry (ABE) and confocal imaging, we demonstrate that a calcium dependent protein kinase, PfCDPK1, an essential regulator of key invasion processes such as motility and microneme secretion, undergoes dynamic palmitoylation and localizes to the merozoite membrane. Treatment of merozoites with the PAT inhibitor, 2-bromopalmitate (2-BP), effectively inhibits microneme secretion and RBC invasion by the parasite, thus opening the possibility of targeting P.falciparum PATs for antimalarial drug discovery to inhibit blood stage growth of malaria parasites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.