Abstract

Protein S-nitrosation (SNO), a posttranslational modification (PTM) of cysteine (Cys) residues elicited by nitric oxide (NO), regulates a wide range of protein functions. As a crucial form of redox-based signaling by NO, SNO contributes significantly to the modulation of physiological functions, and SNO imbalance is closely linked to pathophysiological processes. Site-specific identification of the SNO protein is critical for understanding the underlying molecular mechanisms of protein function regulation. Although careful verification is needed, SNO modification data containing numerous functional proteins are a potential research direction for druggable target identification and drug discovery. Undoubtedly, SNO-related research is meaningful not only for the development of NO donor drugs but also for classic target-based drug design. Herein, we provide a comprehensive summary of SNO, including its origin and transport, identification, function, and potential contribution to drug discovery. Importantly, we propose new views to develop novel therapies based on potential protein SNO-sourced targets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call