Abstract

In this study, separation of protein (bovine serum albumin (BSA)) was carried out by ceramic microfiltration membranes. Ceramic membranes were fabricated by using fly-ash with different proportion (2-8 wt%) of fuller clay and fraction (20 wt%) of inorganic additives. Synthesized ceramic membranes were characterized using scanning electron microscope, X-ray diffraction analysis, mechanical-chemical stability, porosity and pure water flux. It was observed that the mechanical and chemical stability of ceramic membrane increases with increase in fuller clay’s content. Ceramic membrane with 8% fuller clay (C4) exhibited maximum flexural strength of 20 MPa. C4 membrane also shows least porosity of 29.9%, permeability of 0.397 L m-2h-1kPa-1, 20.15% water uptake capacity and 0.428 μm average pore radius. The BSA rejection efficiency of C4 membrane was studied for different operating parameter such as feed concentration (200-1000 mg/L), feed pH (2-10) and applied pressure (68-482 kPa). Maximum BSA rejection (82%) and flux (81 L m-2 h-1) has been observed at optimized condition (208 kPa, natural pH and 200 mg/L concentration). The results obtained in this work indicate that synthesized membrane could be used as proficient microfiltration membrane for protein rejection applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.