Abstract

Counter-current chromatographic separation of proteins was performed using a rotary-seal-free nonsynchronous coil planet centrifuge (CPC) fabricated in our laboratory. This apparatus has a unique feature that allows a freely adjustable rotational rate of the coiled separation column at a given revolution speed. The separation was performed using a set of stable proteins including cytochrome c, myoglobin and lysozyme with two different types of aqueous–aqueous polymer phase systems, i.e., PEG (polyethylene glycol) 1000–dibasic potassium phosphate, and PEG 8000–dextran T500 in 5 m M potassium phosphate buffer. Using a set of multilayer coiled columns prepared from 0.8 mm I.D. PTFE tubing with different volumes (11, 24, 39 ml), the effect of the column capacity on the partition efficiency was investigated under a given set of experimental conditions. Among these experiments, the best separation of proteins was attained using the 39 ml capacity column with a 12.5% (w/w) PEG 1000–12.5% (w/w) dibasic potassium phosphate system at 10 rpm of coil rotation under 800 rpm. With lower phase mobile at 0.2 ml/min in the head-to-tail elution, the resolution between cytochrome c and myoglobin was 1.6 and that between myoglobin and lysozyme, 1.9. With upper phase mobile in the head-to-tail elution, the resolution between lysozyme and myoglobin peaks was 1.5. In these two separations, the stationary phase retention was 35.0 and 33.3%, respectively. Further studies were carried out using a pair of eccentric coil assemblies with 0.8 mm I.D. PTFE tubing at a total capacity of 20 ml. A comparable resolution was obtained using both lower and upper phases as a mobile phase in a head-to-tail elution. The results of our studies demonstrate that the nonsynchronous CPC is useful for protein separation with aqueous–aqueous polymer phase systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.