Abstract

In this study, the support vector machine (SVM) is applied as a learning machine for the secondary structure prediction. As an encoding scheme for training the SVM, position-specific scoring matrix (PSSM) is adopted. To improve the prediction accuracy, three optimization processes such as encoding scheme, sliding window size and parameter optimization are performed. For the multi-class classification, the results of three one-versus-one binary classifiers (H/E, E/C and C/H) are combined using our new tertiary classifier called SVM/spl I.bar/Represent. By applying this new tertiary classifier, the Q/sub 3/ prediction accuracy reaches 89.6% on the RSI 26 dataset and 90.1% on the CB513 dataset. Also the Segment Overlap Measure (SOV) is 85.0% on the RS 126 dataset and 85.7% on the CB513 dataset. Compared with the existing best prediction methods, our new prediction algorithm improves the accuracy about 13%) in terms of Q/sub 3/ and SOV, the two most commonly used accuracy measures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.