Abstract

We extend logistic discriminant function methodology to compete effectively with neural networks and "information theory" methods in prediction of protein secondary structure. Unlike "black-box" methods, our model produces 400 pairwise interaction parameters which are interpretable from a molecular standpoint. Under optimal conditions, our model can produce up to 65.9% crossvalidated prediction accuracy on three states. A broad family of models is searched using a semi-parametric (penalized) approach combined with stepwise parameter selection. We show that optimal models have about 800 effective parameters for this data set. The highest prediction accuracy is concentrated in a fraction of the total residues, and the confidence of a prediction can be easily calculated. Such high-confidence predictions may be useful as the basis for prediction of the complete structure of the protein.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.