Abstract

Taking advantage of recent advances in polarized Raman microspectroscopy, and based on a rational decomposition of the amide I band, the conformation and orientation of proteins have been determined for cocoon silks of the silkworms Bombyx mori and Samia cynthia ricini and dragline silks of the spiders Nephila clavipes and Nephila edulis. This study distinguished between band components due to β-sheets, β-turns, 3 1-helices, and unordered structure for the four fibers. For B. mori, the β-sheet content is 50%, which matches the proportion of residues that form the GAGAGS fibroin motifs. For the Nephila dragline and S. c. ricini cocoon, the β-sheet content (36–37% and 45%, respectively) is higher than the proportion of residues that belong to polyalanine blocks (18% and 42%, respectively), showing that adjacent GGA motifs are incorporated into the β-sheets. Nephila spidroins contain fewer β-sheets and more flexible secondary structures than silkworm fibroins. The amorphous polypeptide chains are preferentially aligned parallel to the fiber direction, although their level of orientation is much lower than that of β-sheets. Overall, the results show that the four silks exhibit a common molecular organization, with mixtures of different amounts of β-sheets and flexible structures, which are organized with specific orientation levels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call