Abstract
Hydrogen is an attractive fuel with potential for production scalability, provided that inexpensive, efficient molecular catalysts utilizing base metals can be developed for hydrogen production. Here we show for the first time that cobalt myoglobin (CoMyo) catalyzes hydrogen production in mild aerobic conditions with turnover number of 520 over 8 hours. Compared to free Co-protoporphyrin IX, incorporation into the myoglobin scaffold results in a 4-fold increase in photoinduced hydrogen production activity. Engineered variants in which specific histidine resides in proximity of the active site were mutated to alanine result in modulation of the catalytic activity, with the H64A/H97A mutant displaying activity 2.5-fold higher than wild type. Our results demonstrate that protein scaffolds can augment and modulate the intrinsic catalytic activity of molecular hydrogen production catalysts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.