Abstract

Protein S-nitrosylation is a covalent post-translational modification through coupling of a nitric oxide (NO) moiety with the reactive thiol group of a protein cysteine residue to form an S-nitrosothiol (SNO). S-nitrosylation is a key mechanism in the transmission of NO-based cellular signals in the vital cellular processes, including transcription regulation, DNA repair, and apoptosis. Contemporary research has implicated dysregulation of S-nitrosylation in severe pathological events, including cancer onset, progression, and treatment resistance. The S-nitrosylation status may be directly linked to many cancer therapy outcomes as well as therapeutic-resistance, emphasizing the need to develop S-nitrosylation-related anti-cancer therapeutics. The role of S-nitrosylated proteins in the development and progression of cancer are varied, generating a critical need for a thorough review of the current dynamic research in this area.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.